
Volume Three—Modules DRAFT – 31 July 2000 i

Chapter Six—Selectors Los Alamos National Laboratory

Chapter Six: Contents
 (Selectors/Iteration Databases – LA-UR 00-1725)

Disclaimer

These archived, draft documents describe TRANSIMS, Version 1.1, covered by the
university research license. However, note that the documentation may be incomplete in
some areas because of the ongoing TRANSIMS development. More recent
documentation (for example, Version 2.0) may provide additional updated descriptions
for Version 1.1, but also covers code changes beyond Version 1.1.

1. INTRODUCTION .. 1

1.1 OVERVIEW... 1
1.2 THE ITERATIVE PROCESS ... 4
1.3 TRANSIMS FRAMEWORK FLEXIBILITY .. 7

2. ALGORITHM... 9

2.1 OVERVIEW... 9
2.2 PROCESSING ALGORITHMS .. 9
2.3 BUILDING FIELDS .. 12

3. AN EXAMPLE SELECTOR/ITERATION DATABASE AND SCRIPT15

3.1 HARD-CODED ALGORITHMS .. 15
3.2 TRAVELER ACTIONS .. 16

APPENDIX A: DESCRIPTION OF SELECTOR/ITERATION DATABASE FIELDS18

CHAPTER SIX: INDEX ..19

Chapter Six: Figures

Fig. 1. The selection process... 3
Fig. 2. Location of the Selector/Iteration Database within a typical TRANSIMS experimental

design.. 5
Fig. 3. Typical Selector/Iteration Database logic. ... 5
Fig. 4. Four examples of iteration progressions. ... 6
Fig. 5. Typical Selector/Iteration Database data flow. .. 7

Volume Three—Modules DRAFT – 31 July 1000 1

Chapter Six—Selectors Los Alamos National Laboratory

Chapter Six—Selectors/Iteration Databases

1. INTRODUCTION

1.1 Overview

A key distinguishing feature of TRANSIMS is the process known as iterative feedback.
Feedback provides a natural way to tailor models (of activity locations, mode selections,
route planning, etc.) to specific, possibly overlapping, subpopulations. Feedback enables
the overall computational system to reflect “learned” behavior within the simulated
population represented. Feedback involves two crucial processes:

• Biased selection – defining a subpopulation based on any static or dynamic
information about travelers available to TRANSIMS.

• Updating travelers – revising the selected subpopulation’s use of the transportation
system by controlling the quality of information about the system available to them.

The information about travelers available to TRANSIMS consists of the traveler-specific
data contained in population, activity, plan, vehicle, and simulation output files. This data
is all generated by TRANSIMS under specific hypotheses about the transportation
network. By carefully controlling the hypotheses, TRANSIMS can be used to steer
travelers toward certain choices.

The mechanics of controlling information flow among TRANSIMS modules is discussed
in the Input/Output section of each module’s description. This chapter describes the
Selector/Iteration Database and how it works together with an iteration script to control
the overall TRANSIMS framework. A typical TRANSIMS study involves repeated
iteration between modules. There is no single, “standard” iteration script because
different study designs involve different iteration schemes.

One important example of feedback is in solving the traffic assignment problem. The
simplest version of this uses a loop between the Route Planner and Traffic
Microsimulator modules. On the first pass of the Route Planner, routes are chosen under
the hypothesis that travel time is well represented by free speeds on the network (i.e., that
travelers do not interact). Correction for traveler interactions can be applied simply by
making available to the Route Planner information about actual travel times produced by
the Traffic Microsimulator1. With this information, the Route Planner will choose
different routes for most travelers, resulting in different travel times. In this case,
updating travelers is accomplished by re-running the Route Planner with an updated
travel time table. However, there is still a wide range of different feedback schemes for
this problem which depend on the selection step – exactly which travelers are to be run
through the Route Planner with updated travel time information. One selection process is
to choose a certain fraction of travelers uniformly at random. The Selector/Iteration

1 Notice that there is no requirement to provide correct travel time information – it might be noisy, or
averaged together with travel times used in the previous run.

Volume Three—Modules DRAFT – 31 July 1000 2

Chapter Six—Selectors Los Alamos National Laboratory

Database described below supports much more sophisticated processes, though. For
example, one could select only travelers with automobile drives of an hour or more who
cross a geographic feature (like a river).

Of course, there are many more information flows in TRANSIMS than just the travel
time table. Every TRANSIMS module can be used to update only a selected
subpopulation using information provided by the framework. In effect, this is like
providing a separate model for every conceivable subdivision of the population without
the need for fitting each model separately. For example, work location is chosen using a
single simple model for the entire population. If people who commute by bus across a
river are assigned work locations poorly, selecting that subpopulation and running the
work location assignment model with slightly different input information can change the
poorly selected locations for that subpopulation with no change in the model itself.

Notice that a single traveler might be in two subpopulations – for example, the previous
subpopulation and the subpopulation assigned to households larger than five people who
also have longer than average commutes—but no sophisticated correlation structure
needs to be built into the model to handle such cases correctly.

Selection is based on both absolute criteria such as traveler’s mode and on relative
criteria such as the duration of a trip compared to the duration of all other trips in the
subpopulation picked out by the absolute criteria. The relative criteria act as user-
specified cost functions. Thus, we might select the 10% of travelers meeting some
absolute criteria who have the longest actual travel time compared with their expected
travel time.

Fig. 1 gives an indication of how the selection process works. Here data is collected on
the travelers’ incomes, their travel modes, the length of trips, whether they cross the river,
and the relative length of the trip. All travelers with some collection of these
characteristics, for example those on bus trips with income >$40k, are collected and the
distribution of relative trip duration is formed. A portion of these travelers with the
largest duration is selected to travel by a different mode.

Volume Three—Modules DRAFT – 31 July 1000 3

Chapter Six—Selectors Los Alamos National Laboratory

Traveler Income Mode >1 Cross Relative . . .
 hour? river? duration
291362 $25K bus no yes 1.2 . . .
291363 $34K car yes no 1.6 . . .
291364 $42K car no yes 1.1 . . .
291365 $ 0K walk no no 1.0 . . .
291366 $38K car yes yes 2.3 . . .
291367 $45K bus yes no 1.4 . . .
291368 $30K car yes yes 1.3 . . .

The iteration database:

Selection criterion: Selects travelers:

bus trips with income >$40K 291367
short trips crossing the river 291362 291364
long car trips not crossing the

 river, relative duration > 1.3 291363

Selection and Feedback

Cost
(Relative duration, effective speed, . . .)

Prob (cost | criterion)

Change activity location

Change mode

Fig. 1. The selection process.

Volume Three—Modules DRAFT – 31 July 1000 4

Chapter Six—Selectors Los Alamos National Laboratory

1.2 The Iterative Process

Users can prepare an iteration script to control the entire iteration process. The script uses
special control commands specifically developed for this iteration of TRANSIMS
components. It enables the user to filter results, run repeated iterations, establish stopping
criteria, and perform a host of other operations that make the analyst’s job less labor
intensive.

During each iteration, the iteration script controlling the current study typically invokes a
Selector/Iteration Database. (The script might even use a different Selector/Iteration
Database for each iteration in a study.) When a Selector/Iteration Database runs, it
usually will do the following:

• Read information about the travelers from the Selector/Iteration Database.

• Examine each traveler and decide whether to

§ regenerate his or her activities using the activity generator,

§ select a new route between his or her existing activities using the Route Planner,
or

§ retain his or her existing activities and the planned route between them.

• Write the selections made for each traveler into data files that can be read by the
Activity Generator and the Route Planner when they are executed.

• Summarize the selections made and the current state of the system into a
Selector/Iteration Database statistics data file.

Fig. 2 and Fig. 3 illustrate a Selector/Iteration Database’s decision-making process.

Volume Three—Modules DRAFT – 31 July 1000 5

Chapter Six—Selectors Los Alamos National Laboratory

Activity
Generator

filter, sort,
m

erge,
noise

reassign
travelers

Summary
Output

Traveler
Events

Activity Set

Route
Planner

Traffic Micro-
simulator

update

Plan Set
Iteration

Database

new activities

replan
travelers

m
erge/update

filter, sort,
m

erge,
noise

new plans update

filter, sort,
m

erge,
noisenew output

Synthetic
Population

Population
Synthesizer

selector

resimulate
travelers

roll back time, or pause

Selector
Statistics

update

update

Emissions
Estimator

Emissions
Inventory

filter, sort,
m

erge,
noise

updatenew emissionsrecalculate
emissions

ar
ch

iv
e

Fig. 2. Location of the Selector/Iteration Database within a typical TRANSIMS
experimental design.

select travelers
to resimulate

Iteration
Database

Selector
Statistics

Selection
Choices

extract statistics used
to decide how to
proceed with the

iteration

select travelers
to reassign

decide
whether to reassign,
replan, or resimulate

travelers

select travelers
to replan

Activity
Generator

Route
Planner

Traffic
Microsim.

select travelers
to resimulate

Fig. 3. Typical Selector/Iteration Database logic.

Volume Three—Modules DRAFT – 31 July 1000 6

Chapter Six—Selectors Los Alamos National Laboratory

After the Selector/Iteration Database completes the selection process for all travelers, the
Activity Generator, Route Planner, or Traffic Microsimulator runs to calculate the
updated activity set, plan set, or microsimulation output files, respectively (according to
the decisions made by the Selector/Iteration Database).

The iteration script will re-invoke a Selector/Iteration Database again at the start of the
next iteration in the study. Fig. 4 shows examples of four possible progressions, as
determined by the Selector/Iteration Database.

Population

Activities

Plans

Traffic

Emissions

iteration number

1

2

3

4

75

6 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Population

Activities

Plans

Traffic

Emissions

1

2

3

4

75

6 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

iteration number

Population

Activities

Plans

Traffic

Emissions

13 14 15 16 17 18 19 20 21 22 23

iteration number

1

2

3

4

75

6 8

9

10

11

12

Population

Activities

Plans

Traffic

Emissions

5 10 11 12 20

iteration number

1

2 4 6 8 9 13 15 16 18 19 21 22

3 7 14 17 23

Fig. 4. Four examples of iteration progressions.

The Selector/Iteration Database is the archive of information about travelers across
iterations. The Selector/Iteration Database uses this information to make its selection
decisions. The data contained in the database are chosen by the user from:

• The fields of the population, activity, and plan files—for example, income, mode
preference, or the expected duration of a trip.

• Information extracted from detailed Traffic Microsimulator event output—for
example, the actual duration of a trip.

• Information deduced from combinations of the previous two—for example the
duration of a trip relative to its expected duration.

The left side of Fig. 5 shows this data flow into the Selector/Iteration Database.

Volume Three—Modules DRAFT – 31 July 1000 7

Chapter Six—Selectors Los Alamos National Laboratory

Iteration Database
� record of traveler iterations

within a study
� attributes representing

quasi-static information about
travelers

� expectations encompassing
planned activities, routes, and
times

� experiences comprising
information extracted from
detailed microsimulation
output

� analyst may customize
contents for a particular
study

Selector

Selector Statistics
� basic summary of choices

made
� how many travelers are being

reassigned activities or plans
� distributions of the difference

between expected and
experienced travel times for
various traveler populations

Selection Choices
� list of the travelers that will be

reassigned activities,
replanned, resimulated, etc.

� embodies the detailed
decisions of the Selector

Fig. 5. Typical Selector/Iteration Database data flow.

The Selector/Iteration Database also has two principal outputs: Selector/Iteration
Database statistics and selection choices. The selection choice files simply list the
travelers that will be reassigned activities or will be re-planned, re-simulated, etc. These
files embody the Selector/Iteration Database’s detailed decisions.

Selector/Iteration Database statistics provide a basic summary of the choices a
Selector/Iteration Database makes (e.g., how many travelers are being re-planned,
distributions of the difference between expected travel times, and experienced travel
times for various traveler populations). The right side of Fig. 5 shows this data flow out
from the Selector/Iteration Database.

1.3 TRANSIMS Framework Flexibility

The framework’s flexibility allows for countless variations in the iteration process. For
example, in some studies, part of the Selector/Iteration Database may run again after the
Activity Generator or Route Planner completes its execution. Thus, the Selector/Iteration
Database can decide which of the generated activities or plans will be accepted for
travelers. Those not accepted are discarded and new activities or plans are produced.

Users can also design Selectors/Iteration Databases that will feed travelers to the Activity
Generator or Route Planner one-by-one so that the Selector/Iteration Database, Activity
Generator, Route Planner, and Traffic Microsimulator all execute simultaneously, with
their coordination controlled by the Selector/Iteration Database. This may increase the
computational efficiency of a study, thus allowing for new experimental designs with
finely controlled iteration.

The iteration script has the potential to make additional choices, such as the following:

Volume Three—Modules DRAFT – 31 July 1000 8

Chapter Six—Selectors Los Alamos National Laboratory

• which version of the Activity Generator, Route Planner, or Traffic Microsimulator
will run during the present iteration.

• if transit schedules will be adjusted or vehicles added or removed from the transit
fleet.

• if network characteristics (such as traffic signal timing, congestion pricing, or
roadway information signs) will be altered.

• which travelers receive data from traffic information systems.

• whether to complete the study (i.e., end the iteration) because the iterations have
converged sufficiently (or diverged).

Several Selector/Database Iteration implementations have been written that have use in
typical transportation planning studies. For example, Fig. 3 shows a typical iteration
scheme that is set up by the Selector/Iteration Database script. In this scheme, activities,
plans, and microsimulations are iterated until traffic behavior on the network stabilizes. It
is not difficult for analysts to write additional Selectors/Iteration Databases for their own
specialized studies.

Volume Three—Modules DRAFT – 31 July 1000 9

Chapter Six—Selectors Los Alamos National Laboratory

2. ALGORITHM

2.1 Overview

This section specifies the intended interface to a suite of tools providing Selector/Iteration
Database functionality. These tools are provisionally known as the Collator, Stratifier,
and Selector/Iteration Database. Although these tools are not available in this
distribution of TRANSIMS, their interface and design is documented here because it is
a part of the final TRANSIMS package.

Each different module of TRANSIMS provides information that can be used to fill in
some of the fields. For example, after running the Population Synthesizer, demographic
information can be collected; after running the Route Planner, expected travel times can
be collected. The Collator can be run after each module and will fill in all the fields in the
ITDB that depend on that module with the most recent data available.

As its name indicates, the Collator's main function is to gather data from disparate
sources (e.g., activity files, plan files, event files) into a single table keyed by traveler ID.
In addition, the Collator will provide some commonly used processing algorithms
described below.

2.2 Processing Algorithms

One form of processing determines whether a traveler passes through a particular
geographic region or whether the traveler crosses from one region to another. This
processing is triggered if the configuration file contains the ITDB_USE_TRAVERSE or
ITDB_USE_CROSS_BOUNDARY keys.

Both keys’ values should be a semicolon-separated list of user analysis zones (UAZ),
which are defined by the user. UAZs may be a coarsening of traffic analysis zones
(TAZ), but they may also be completely different. The UAZs will be placed in separate
files of the form to be used to specify regions for the Output Visualizer. That is, the first
line gives the number of polygons to follow. Each line after that gives a polygon (UAZ)
ID followed by the number of vertices in the polygon, then by the x,y,z values for each
vertex. The interpretation of UAZs will ignore the “z” value.

The coordinate system will be the one used by the network node table. There could be
more than one set of UAZs: one might be used to define the Central Business District, for
example, while another distinguishes the two sides of a river. There will be a sequentially
numbered set of UAZs, one for each UAZ_FILE_n key. The first value of n must be “1.”

Another form of processing that the Collator will do is to calculate the following simple
functions of pairs of columns:
DIFF (A, B) = A - B
REL_DIFF (A, B) = (A - B) / B
RATIO (A, B) = A / B

Volume Three—Modules DRAFT – 31 July 1000 10

Chapter Six—Selectors Los Alamos National Laboratory

These can be specified using configuration file keys of the form ITDB_USE_DIFF
<A>, ; <C>, <D> , where <A>, , etc., are the names of fields in the ITDB.
(REL_DIFF could be calculated using DIFF and RATIO, but it is such a common
operation that TRANSIMS provides a simple means of doing it.)

2.2.1 Stratifier

The Stratifier uses a combination of built-in algorithms on the information contained in
the ITDB to stratify or classify trips. The classification is stored in the ITDB as indexes
into a set of n-way user-specified tables. The tables themselves can be reconstructed from
the configuration file used with the Stratifier.

2.2.2 Selector/Iteration Database

A Selector/Iteration Database uses the ITDB to select a set of travelers. Each algorithm
can be coded as a separate executable, or could be incorporated into a single monolithic
Selector/Iteration Database executable. A Selector/Iteration Database algorithm has a
name, a goal, a cost function (optionally), and optional parameters associated with it.
These attributes are defined by configuration file keys SEL_ALGORITHM_n,
SEL_GOAL_n, SEL_COST_n, and SEL_ALGORITHM_n_PARAMETER_m, respectively,
where n and m are replaced by positive integers. The name is user defined, but must be
unique across algorithms. The goal is either to re-route the traveler or to make use of one
of the feedback pathways defined in the activity generator. Currently, these are as
follows:

A = full activity generation by matching to survey households.

B = New location given updated travel times

C = Change mode to given mode string

D = New location given new mode string and updated travel times

E = Change activity times

The cost function must be the name of a field present in the ITDB when the
Selector/Iteration Database is run. Each algorithm may require its own set of parameters.
Because we cannot know ahead of time what all of the parameters will be, we refer to
them in the configuration file by number. The designer of a Selector/Iteration Database
algorithm must ensure that the parameters are used correctly. No Selector/Iteration
Database algorithm is required to handle every goal.

The required fields in the ITDB are as follows:

• TRAVID
• HOUSEID
• TRIPID

Volume Three—Modules DRAFT – 31 July 1000 11

Chapter Six—Selectors Los Alamos National Laboratory

The user may specify the following additional fields of raw data, all of which come from
either the population, activity, plan, or event files, using keys of the form
ITDB_USE_<field_name> , where <field_name> is one of

• DESIRED_ARRIVAL_TIME (this implies the fields DESIRED_ARRIVAL_TIME_UB,
DESIRED_ARRIVAL_TIME_A, DESIRED_ARRIVAL_TIME_B, which can also be
specified separately)

• EXPECTED_ARRIVAL_TIME

• ACTUAL_ARRIVAL_TIME

• NUM_STOPS

• TIME_STOPPED

• TOTAL_DISTANCE

• TOTAL_TIME

• MODE_PREF

• EXPECTED_DURATION

• HOUSEHOLD_DEMOS

• PERSON_DEMOS

The user may specify the presence of the following additional fields of processed data
using associated configuration file keys:

• GEOM_DISTANCE

• TRAVERSE_UAZ<m>_<n>

• CROSS_BOUNDARY_UAZ<m>

• DIFF_<c1>_<c2>

• REL_DIFF_<c1>_<c2>

• RATIO_<c1>_<c2>

In the above, m, n, and p are integers, and c1 and c2 are the names of fields of raw data.
There will be a single value indicating that the calculation did not return a number (to
handle, divide by zero or missing data).

Volume Three—Modules DRAFT – 31 July 1000 12

Chapter Six—Selectors Los Alamos National Laboratory

2.3 Building Fields

The Stratifier builds fields named STRAT_TABLE_n using data in the previous fields. The
value of this field is the index into a cell in an n-way table. The details of how binning is
accomplished are determined by

• configuration file keys specifying the number of variables in the table (or levels in the
tree),

• the cost function used for the split at each level (which is the name of a field in the
ITDB),

• the number of bins (or degree of the nodes at that level of the tree), and

• optionally, the boundaries of the bins.

Bin boundaries do not need to be specified for categorical data. If they are not specified
for ordinal data, quantiles will be used. The example below is an annotated portion of a
configuration file using the keys described above.

Specify files containing two sets of user analysis zones.
ITDB_UAZ_1 /tmp/zones_1
ITDB_UAZ_2 /tmp/zones_2

Add two boolean fields to the ITDB: one is true if a traveler
passes through zone 2 in the first set of UAZs; another is
true if a traveler passes through zone 4 in the second set of UAZs.
These fields will be named TRAVERSE_UAZ1_2 and TRAVERSE_UAZ2_4.
ITDB_USE_TRAVERSE UAZ1=2; UAZ2=4

Add three boolean fields to the ITDB: the first is true if a
traveler's origin and destination are in different zones as defined
by the third set of UAZ's; the second is true if they are in
different zones as defined by the second set of UAZ's; the third uses
the fourth set of UAZ's. They will be named CROSS_BOUNDARY_UAZ3,
CROSS_BOUNDARY_UAZ2, and CROSS_BOUNDARY_UAZ4.
ITDB_USE_CROSS_BOUNDARY UAZ3 ; UAZ2; UAZ4

These keys make sure the relative difference between
actual and expected trip duration are in the ITDB for
later use in a cost function.
ITDB_USE_EXPECTED_DURATION 1
ITDB_USE_TOTAL_TIME 1
ITDB_USE_REL_DIFF EXPECTED_DURATION; TOTAL_TIME

The first stratification will be based on three splits.
STRAT_LEVELS_0 3

The first split in the first stratification will be based on
whether a traveler passed through zone 2 in the first set of UAZs.
Note that this is categorical data - there will be one bin
for each of the two categories.
STRAT_SPLIT_0_0 TRAVERSE_UAZ1_2

Volume Three—Modules DRAFT – 31 July 1000 13

Chapter Six—Selectors Los Alamos National Laboratory

The second split in the first stratification will be on trip length.
DISTANCE is the name of a field in the ITDB.
STRAT_SPLIT_1_0 DISTANCE

DISTANCE is a numerical field - we must specify how many bins.
STRAT_SPLIT_BINS_1_0 3

We specify the bin boundaries for this split.
STRAT_SPLIT_VAL_0_1_0 10.0
STRAT_SPLIT_VAL_1_1_0 50.0

The 3rd and final split in the first stratification will be on time.
TIME is the name of a field in the ITDB. We will make four bins.
We don't specify the bin boundaries - the code will use p-tiles for
p bins.
STRAT_SPLIT_2_0 TIME
STRAT_SPLIT_BINS_2_0 2

When the stratifier runs, it will assign values from
0 to 2 * 3 * 4 -1 = 23 to each traveler in the column STRAT_0.
Notice that it doesn't assume anything about the cost function to be
used in the Selector/Iteration Database, it just partitions the
travelers. There will also be a tool that reads the configuration
file, takes a bin id or traveler id and says something like:

TRAVERSE_UAZ1_2 true
DISTANCE [10.0, 50.0]
TIME [73.4, 228.6]

A similar tool could write out the occupancies of each cell in the
table.

Now the configuration file keys for the Selector/Iteration Database
can refer to algorithms and stratifications:

Each algorithm selects a set of travelers for some purpose.
The SEL_GOAL key determines the purpose.
This selection will be used to pick a new mode for some travelers.
Other choices here are WORK_LOCATION, TIME,
SEL_GOAL_0 MODE.

Each algorithm has a name associated with it.
Use Chris's algorithm for selecting travelers.
SEL_ALGORITHM_0 CHRIS

An algorithm may refer to a cost function that has
been calculated by the stratifier or collator for each traveler
and each trip.

Use (expected - actual time)/(expected time) as the cost function for
selecting.
REL_DIFF_EXPECTED_DURATION_TOTAL_TIME is a field in the ITDB if
ITDB_USE_EXPECTED_DURATION 1
ITDB_USE_TOTAL_TIME 1
ITDB_USE_REL_DIFF EXPECTED_DURATION; TOTAL_TIME
are all in the configuration file.
SEL_COST_0 REL_DIFF_EXPECTED_DURATION_TOTAL_TIME

Volume Three—Modules DRAFT – 31 July 1000 14

Chapter Six—Selectors Los Alamos National Laboratory

Most algorithms will be parameterized. If we knew ahead of time what
all the algorithms were and what parameters they required, I would
add them as configuration file keys. Instead, I will fake it,
allowing for keys of the form:
SEL_ALGORITHM_1_PARAMETER_0 0.25

To select 10% of travelers at random for replanning, you might say
SEL_ALGORITHM_1 RANDOM SEL_GOAL_1 PLAN SEL_ALGORITHM_1_PARAMETER_0 0.10

Volume Three—Modules DRAFT – 31 July 1000 15

Chapter Six—Selectors Los Alamos National Laboratory

3. AN EXAMPLE SELECTOR/ITERATION DATABASE AND
SCRIPT

A simple Selector/Iteration Database is provided with this distribution of TRANSIMS. It
can be used to update the iteration database after the Traffic Microsimulator is run. It can
also select travelers at random or based on where they appear in each of several
distributions of statistics. This Selector/Iteration Database is used in the script controlling
iterations in the "multimode" scenario included in this distribution. The iteration script
ties the iteration process together by running the components, merging files, and
archiving output data. For further information on this script, please see the multimode
documentation in Volume Five (Software: Interface Functions and Data Structures).

The Selector/Iteration Database's merge-update function is used to update the contents of
the iteration database by using the latest population, activity, plan, and traveler event files
generated by the Population Synthesizer, Activity Generator, Route Planner, and Traffic
Microsimulator, respectively. This function is invoked if the SEL_FILL_ITDB
configuration file key is true when the Selector/Iteration Database is run.

Appendix A summarizes the contents of the iteration database used by the
Selector/Iteration Database described here. After the iteration database has been
completed, the Selector/Iteration Database may be used to build a variety of cost
functions, depending on the value of several configuration file keys.

In addition, the Selector/Iteration Database can generate changes to apply to sets of
travelers using several hard-coded algorithms. These are described below, but not used by
the Selector/Iteration Database script in calnet. Instead, it uses UNIX tools to process the
(ASCII text) iteration database and generate its own feedback. This demonstrates the
flexibility of the feedback and iteration process.

3.1 Hard-coded Algorithms

3.1.1 Duration Cost

expected
T

expected
T

actual
T

legtraveler
i

duration
c

−
=)

,
(

where actualT is the actual travel time for the trip as realized by the Traffic

Microsimulator, and expectedT is the expected travel time for the leg as estimated by the

Route Planner. This measures travel time “frustration.”

Volume Three—Modules DRAFT – 31 July 1000 16

Chapter Six—Selectors Los Alamos National Laboratory

3.1.2 Distance Cost

geometric
D

geometric
D

actual
D

legtraveler
i

distance
c

−
=)

,
(

where actualD is the actual distance traveled in the Traffic Microsimulator, and geometricD is

the point-to-point Euclidean distance between the leg’s endpoints. This measures how far
out of his or her way the traveler goes.

3.1.3 Stopped Cost

Stopped cost:
actual

T
stopped

T

legtraveler
i

stopped
c =)

,
(

where stoppedT is the time stopped in traffic, and actualT is the total travel time. This

measures the fraction of the time a traveler spends waiting.

3.1.4 Late Cost

actual
A

desired
A

legtraveler
i

late
c −=)

,
(

where desiredA is the arrival time desired by the Activity Generator, and actualA is the actual

arrival time realized by the Traffic Microsimulator. This measures how late the traveler is
for his or her activity.

3.1.5 Effective Speed Cost

actual
T
geometric

D

legtraveler
i

speed
c =)

,
(,

where geometricD is the point-to-point Euclidean distance between the leg’s endpoints, and

actualT is the total travel time. This measures the traveler’s effective speed through the

network.

3.2 Traveler Actions

Once the cost functions have been built, they are sampled to determine what actions the
travelers will take. The following steps are used to make these determinations:

Step One Select the fraction reassignf of the travelers uniformly at random,

)(,legtravelerdistance ic , for reassignment of activity locations by the activity

generator. Once this is done, use the Route Planner to reroute the
travelers.

Volume Three—Modules DRAFT – 31 July 1000 17

Chapter Six—Selectors Los Alamos National Laboratory

Step Two Select the fraction remodef of the travelers with the highest effective speed

costs,)(,legtravelerspeed ic , for reassignment of mode preferences by the

activity generator. Once this is done, use the Route Planner to reroute the
travelers.

Step Three Select the fraction retimef of travelers with the highest late costs,

)(,legtravelerlate ic , for reassignment of activity times by the Activity

Generator. Once this is done, use the Route Planner to reroute the
travelers.

Step Four Select the fraction reroutef of travelers with the highest duration costs,

)(,legtravelerduration ic , for rerouting by the Route Planner.

The end result of the selection choices consists of a pair of files containing a list of
travelers whose activities must be regenerated (along with what type of regeneration must
be done) and a list of travelers whose routes must be re-planned.

Volume Three—Modules DRAFT – 31 July 1000 18

Chapter Six—Selectors Los Alamos National Laboratory

Appendix A: Description of Selector/Iteration Database Fields

Field Description Description Data Source
TRAVID traveler’s ID population file
HOUSEID the ID of the traveler’s household population file
TRIPID the ID of the traveler’s trip plan file
LEGID the ID of the trip’s leg plan file
DESIRED_ARRIVAL_TIME the desired arrival time (measured in

fractional hours) at the activity
activity file

DESIRED_ARRIVAL_TIME_
UB

the upper bound for desired arrival time
(measured in fractional hours) at the activity

activity file

DESIRED_ARRIVAL_TIME_
A

beta-distribution parameter specified in the
activity file

activity file

DESIRED_ARRIVAL_TIME_
B

beta-distribution parameter specified in the
activity file

activity file

EXPECTED_ARRIVAL_TIME the expected arrival time (measured in
seconds past midnight) at the activity

plan file

ACTUAL_ARRIVAL_TIME the actual arrival time (measured in seconds
past midnight) at the activity

traveler event
file

NUM_STOPS the number of stops signs the traveler
encountered on this leg

traveler event
file

TIME_STOPPED the number of seconds the traveler was
stopped in traffic on this leg

traveler event
file

TOTAL_DISTANCE the total distance (measured in meters)
traveled on this leg

traveler event
file

TOTAL_TIME the total time (measured in seconds)
traveled on this leg

traveler event
file

GEOM_DISTANCE the straight-line (Euclidean) distance
(measured in meters) planned for travel on
this leg

plan file

MODE_PREF the traveler’s mode preference for this leg
(same integers as in activity file)

activity file

EXPECTED_DURATION the expected duration (measured in seconds)
of the current leg

plan file

Volume Three—Modules DRAFT – 31 July 1000 19

Chapter Six—Selectors Los Alamos National Laboratory

Chapter Six: Index

